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Abstract

Recently, the LEP collaborations have reported a lower bound on
a Standard Model-like Higgs boson of order 89 GeV. We discuss the
implications of this bound for the minimal supersymmetric extension
of the Standard Model (MSSM). In particular, we show that the lower
bound on tan�, which can be obtained from the presently allowed
Higgs boson mass value, becomes stronger than the one set by the
requirement of perturbative consistency of the theory up to scales
of order MGUT (associated with the infrared �xed-point solution of
the top quark Yukawa coupling) in a large fraction of the allowed
parameter space. The potentiality of future LEP2 searches to further
probe the MSSM parameter space is also discussed.
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One of the most striking predictions of the minimal supersymmetric
extension of the Standard Model (the MSSM) is the existence of a light,
O(100 GeV), Higgs particle. The supersymmetric prediction for the range of
the lighter CP-even Higgs boson mass is nicely consistent with the �ts to the
electroweak precision data (for recent �ts see [1, 2]). However, the existence
of the Higgs boson has not yet been directly established experimentally and
the search for it continues to be the main goal of LEP2. The absence of such
a light Higgs particle would eventually rule out low energy supersymmetry
in its minimal version. The present experimental lower bound for its mass
enters into the region most relevant for the MSSM. It is, therefore, quite
timely to discuss the constraints on the MSSM derived from the present and
near-future expected lower bounds on the Higgs boson mass Mh or by the
potential discovery of a light Higgs boson with a mass Mh. One of the most
interesting aspects of this question is the lower bound on the parameter tan �
(tan � = v2=v1, where v1 and v2 are the two Higgs boson doublet vacuum ex-
pectation values), which can be derived within this context. Considering the
MSSM as a low-energy e�ective theory, the bounds on tan� depend on the
physical stop masses (and their mixing angle) but do not depend on any the-
oretical assumption, e.g. on the pattern of soft terms at the GUT scale, or,
more generally, on the actual mechanism that communicates supersymmetry
breaking to the observable sector.

Supersymmetric extensions of the Standard Model provide a framework
for a consistent link between low-energy physics and physics at the GUT
scale. Since the top Yukawa coupling is not asymptotically free, the require-
ment of perturbative consistency of the theory up to the scale MGUT puts a
strong and very interesting bound on the top-quark Yukawa coupling at the
scale of the top-quark mass, ht(mt) [3]. The bound depends slightly on the
mass spectrum of the MSSM and can be somewhat altered by the presence
of extra matter, e.g. 5+ �5 vector-like multiplets at some intermediate scale
MI . With the measured value mpole

t = 173:9� 5:2 GeV [4], and by using the
relation

mpole
t =

1p
2
ht(mt)v sin � + ::: (1)

(where v2 � v2
1
+ v2

2
= 4M2

W=(g
02 + g2) + :::, and the ellipses stand for

perturbative corrections), the upper bound on ht(mt) can also be translated
into a lower bound on tan �.

In this letter we compare the bounds on tan � obtained for a given value
ofMh within the low-energy MSSM with the bound on tan � derived from the
requirement of perturbative consistency of the theory up to the scale MGUT .
We shall show that even the present experimental limit on Mh implies a
bound on tan �, which is well above the perturbativity bound for a large range
of stop masses (and mixings). The infrared �xed-point scenario, associated
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with the values of the top-quark Yukawa coupling close to the perturbative
upper bound remains consistent with the present limit on Mh only for large
values of the heavier stop mass, large stop mass splitting and large mixing
angle.

Stronger lower bounds onMh implymore stringent lower bounds on tan �,
which are consistent with the infrared �xed-point scenario only for heavier
and heavier stops; eventually the two bounds no longer intersect each other.
This is consistent with the well-known upper bound on Mh obtained in the
infrared �xed-point scenario in the minimal supergravity model, with uni-
versal soft SUSY-breaking terms at the GUT scale. As shown in ref. [5]
(and recently con�rmed in a further study [6]), in this case Mh

<
� 98 GeV for

M~ti
<
� 1 TeV, where M~ti are the physical stop masses. Our general analysis

shows that in the unconstrained low-energy MSSM the above limit can only
be slightly relaxed, by at most a few GeV. For instance, Mh ' 103 GeV is
consistent with the infrared �xed point of ht for stop masses of the order of
1 TeV, but only for very large and positive values of the stop mixing angle
and/or a top mass close to its upper 1� range.

In general, taking into account the full structure of the stop mass matrix,
the lighter CP-even Higgs boson mass in the MSSM is parametrized by

Mh =Mh

�
MA; tan�;mt;M~t1;M~t2; At; �; :::

�
(2)

where At and � determine the mixing angle of the stops (as well as some
of their trilinear couplings to the Higgs bosons) and the ellipses stand for
other parameters whose e�ects are not dominant (e.g. the gaugino mass
parameters, or the sbottom sector parameters, which become relevant only
for large values of tan� > 10).

The maximal Mh is always obtained for MA � MZ (in practice, the
bound is saturated for MA

>
� 250 GeV). In this limit one gets from the

e�ective potential approach (see ref. [7] for details) a particularly simple
result for the one-loop corrected Mh [8]:

M2

h =M2

Z cos
2 2� +

3�

4�s2W

m4

t

M2

W

2
4log

 
M2

~t2
M2

~t1

m4
t

!
+

 
M2

~t2
�M2

~t1

4m2
t

sin2 2�~t

!2

� f(M2

~t2
;M2

~t1
) +

M2

~t2
�M2

~t1

2m2
t

sin2 2�~t log

 
M2

~t2

M2

~t1

!#
(3)

where f(x; y) = 2� (x+ y)=(x� y) log(x=y). For large MA, the dependence
on the parameters At and � always appears in the combination ~At = At �
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�= tan �, 1 through the dependence on the left{right stop mixing angle �~t,

sin 2�~t =
2mt

~At

M2

~t2
�M2

~t1

: (4)

The two-loop corrections to Mh are typically O(20%) of the one-loop correc-
tions and are negative [9]{[12]. They are taken into account in our numerical
results (we use the method proposed in [11]). Eq. (3) is, however, very useful
for the qualitative understanding of the �nal results. As can be seen from Eq.
(3), for a given lower limit on Mh, larger values of the radiative corrections
to Mh are required for lower values of tan � (i.e. for smaller values of the
tree level part of M2

h). Thus, maximizing the radiative corrections to Mh

sets a lower bound on tan� as a function of M~t1, M~t2 and sin 2�~t. It is hence
interesting to analyse the dependence of Eq. (3) on sin 2�~t.

For �xed M~t1 , M~t2 , the mass of the lighter CP -even Higgs boson is a
quadratic function of sin2 2�~t,

M2

h = F (M~ti) +G(M~ti) sin
2 2�~t +H(M~ti) sin

4 2�~t; (5)

with G(M~ti) > 0 and H(M~ti) < 0. Hence, there is a maximum value of M2

h ,
which is obtained for

�
sin2 2�~t

�max
=

�4 m2

t log
�
M2

~t2
=M2

~t1

�
2
�
M2

~t2
�M2

~t1

�
�
�
M2

~t2
+M2

~t1

�
log

�
M2

~t2
=M2

~t1

� : (6)

For small values of the stop mass splitting, the value of sin2 2�~t that is ob-
tained from the above expression is larger than 1. Indeed, when the di�erence
between the stop masses is much smaller than their sum,

�
sin2 2�~t

�max ' 12m2

t

�
M2

~t2
+M2

~t1

�
�
M2

~t2
�M2

~t1

�2 : (7)

In these cases the physical value of the Higgs boson mass takes its maximal
value for sin2 2�~t = 1, that is for equal values of the diagonal entries M2

~tR
,

M2

~tL
, of the stop square mass matrix. Moreover, in such cases, zero mixing

angle represents a minimum of the Higgs boson mass value.
For sin2 2�~t = 1 the stop masses are given byM2

~t1;2
=M2

SUSY
�mt

~At, where

M2

SUSY =M2

~tL
=M2

~tR
. In this case, it is possible to get a simple expression for

M2

h including the dominant two-loop leading-logarithmic corrections, written

1The quoted formula stays valid even in the case that At and/or � develop complex
phases, provided ~At is replaced everywhere by j ~Atj � jAt � ��= tan �j.
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in terms of ~At and MSUSY . In the limit (mt
~At)=M2

SUSY
� 1, it is given by

[11]

M2

h ' M2

Z cos
2 2�

 
1� 3

8�2
m2

t

v2
Lt

!

+
3

4�2
m4

t

v2

"
1

2
~Xt + Lt +

1

16�2

 
3

2

m2

t

v2
� 8g2

3

!�
~XtLt + L2

t

�#
; (8)

where Lt � log (M2

SUSY
=m2

t ),

~Xt =
2 ~A2

t

M2

SUSY

 
1�

~A2

t

12M2

SUSY

!
(9)

and mt and g2
3
� 4��3 are the running top mass and the strong gauge cou-

pling evaluated at the scale mt, respectively. The expression (8) for M2

h has
a maximum at ~At =

p
6MSUSY. Thus, for moderate values of the stop mass

splitting, the Higgs boson mass is maximized by keeping equal values of the
diagonal entries in the stop mass matrix (M2

~tR
�M2

~tL
) and is approximately

given by Eq. (8).
For su�ciently large values of the stop mass splitting, the value of (sin 2�~t)

max

given by Eq. (6) becomes lower than 1. Even in these cases, the maximal
Higgs boson mass is obtained for rather large values of ~At. To see this we
can take, for example, the case in which the heavier stop mass is of order 1
TeV and the lighter stop mass is of the order of the top quark mass. From
Eq. (6) we get �

sin2 2�~t
�max ' 10

m2

t

M2

~t2

; (10)

corresponding to a value of j sin 2�~tj ' 0:6. Comparing the above expression
with Eq. (4), we get

j ~Atj ' 1:5M~t2: (11)

Hence, as stated above, large values of ~At are necessary to maximize M2

h ,
even in the case of very large splitting of the stop masses. From the value
of sin 2�~t it is also clear that in this case the splitting in the left- and right-
handed stop masses is crucial for generating the di�erence in physical masses
of the heavier and lighter stops.

The computation of the Higgs boson mass is still a�ected by theoret-
ical uncertainties, most notably, those associated with the two-loop �nite
threshold corrections to the e�ective quartic couplings of the Higgs poten-
tial. Recently, partial diagrammatic two-loop computation of the Higgs mass
has been performed [13]. Taking the appropriate limit, the values obtained
by this method are in agreement with our results within a range of 2-3 GeV.
We take these di�erences as the estimates of the uncertainty of the computed
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Mh. In order to take this uncertainty into account and to remain on the con-
servative side, in all cases discussed below we have lowered the bound by 2
GeV with respect to the actually considered Higgs boson mass limit. We
have also considered low values of the chargino and neutralino masses (of the
order of 200 GeV) to minimize their negative e�ects on the Higgs masses.

Our numerical results are shown in Figs. 1{3. In Fig. 1, we plot the
lower bounds on tan �, following from the present experimental limit of 89.5
GeV [14] on a Standard Model (SM)-like Higgs boson mass (MA

>
� 250

GeV) 2, as a function of M~t2 (the heavier stop mass) for several values of
the stop mass splitting �M~t � M~t2 �M~t1 . For a given M~t2 and �M~t, a
scan over sin �~t is performed in order to �nd the lowest value of tan � allowed
by the limit imposed on Mh. For values of the stop mass splitting of order
400 GeV or larger, the minimal value of tan � is obtained for j sin 2�~tj < 1 and,
therefore, the left- and right-handed stop mass parameters M~tL

, M~tR
begin

to di�er, but the value of ~At always remains larger than M~t2, in agreement

with our discussion above. We have also veri�ed that the values of ~At that
maximize the Higgs boson mass, after the dominant leading logarithm two-
loop corrections to the e�ective potential are included, are in good agreement
with the ones obtained from the one-loop expression, Eqs. (4) and (6).

In the same �gure we also show the bounds on tan�, obtained from
the requirement of perturbative consistency of the theory up to the grand
uni�cation scale 3 MGUT ' 2�1016 GeV. In the MSSM, for su�ciently large
values of the top-quark Yukawa coupling at the GUT scale, its low-energy
values are governed by the quasi-infrared �xed-point solution [3]

�
h2t (Q)

�
IR
' 8

9
g2
3
(Q) for Q � O(100GeV): (12)

In order to obtain the physical top-quark mass, we compute the RG evolu-
tion of the Yukawa coupling from MGUT down to the scale Q = mt. The
physical top-quark mass is then calculated by including all �nite corrections
in Eq. (1). The SM part of the corrections to Eq. (1) is dominated by the
gluon contribution and, at the scale Q = mt, is known up to O(�2s) [16].
The corresponding SM one-loop corrections to Eq. (1) proportional to the
top-quark Yukawa coupling are small, of the order of the two-loop QCD
ones[17]. The one-loop supersymmetric particle corrections to Eq. (1) have
been calculated in [18], and their relevance for the correct de�nition of the

2The Higgs boson mass bound quoted here has been obtained from a combined analysis
of three of the four LEP experiments. The individual ALEPH analysis, not included in
the combination, leads to a bound of order 87.9 GeV. The combination of the Higgs search
data of the four experiments would lead to a slightly larger value of the Higgs mass bound,
of order MZ [15].

3The dependence of the lower bound on tan � on the precise value ofMGUT and �s(MZ)
(we use �s(MZ) = 0:118) is not signi�cant for our purpose.
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infrared �xed point solution has been stressed in Refs. [19, 6]. For values of
the heavier stop mass and/or gluino masses much larger than the top-quark
mass, they are dominated by two terms: the �rst contains large logarithmic
factors, which can as well be taken into account by introducing appropriate
step functions in the RGEs [20]:

d

dt
h2t '

h2t
(4�)2

��
9

2
+ � ~Q +

1

2
� ~U

�
h2t �

�
8 � 4

3

�
� ~Q + � ~U

�
�~g

�
g2
3

�
(13)

d

dt
g2
3
=

g4
3

(4�)2

�
�7 + 2�~g +

1

2

h
2� ~Q + � ~U + � ~D

i�
; (14)

where t = log(Q2=M2

Z), � ~X = �(Q �M ~X) and
~Q, ~U and ~D stand for the

left-handed doublet, right-handed up and right-handed down squarks respec-
tively. For simplicity, we have assumed that the squark masses are gener-
ation independent. When the logarithmic factors are large, they must be
resummed, which we have done in our computations [21]. The second domi-
nant term contains the non-logarithmic e�ects,

�mt

mt
' �2�3

3�
~Atm~g � I(m2

~g;M
2

~t1
;M2

~t2
); (15)

where

I(a; b; c) =
a b log(a=b) + a c log(c=a) + b c log(b=c)

(a� b) (b� c) (a� c)
' O

 
1

max(a; b; c)

!
:

(16)
From the above expressions, the dependence of tan � obtained at the

infrared �xed point solution on the sparticle spectrum may be qualitatively
understood. For instance, if all supersymmetric particle masses take equal
values MSUSY � mt, the running of the top quark Yukawa coupling from
the scale MSUSY to the scale Q � O(mt) will be governed by Eqs. (13),
(14) with all � ~X = 0. In this case the top quark Yukawa coupling becomes
smaller at high energies compared to the case in which sparticles are light
(all � ~X = 1 from Q � O(mt) up to Q = MGUT ), because in the former
case the coe�cients in Eq. (13) between Q = mt and Q = MSUSY cause
a slower increase of ht. This implies a smaller lower bound on tan � for
heavier sparticles. The mass of the gluino also has important e�ects on the
bounds: if it is much lower than the stop masses, it makes the strong gauge
coupling less asymptotically free in the low-energy e�ective theory, slowing
the evolution of the top Yukawa coupling to large values with respect to the
case m~g �M~ti, implying again a smaller lower bound on tan�. On the other
hand, the gluino mass also controls the non-leading logarithmic corrections,
Eq. (15), which become larger for heavier gluinos and larger values of the
stop mixing parameters and, in certain regions of parameter space, can be
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of the order of or larger than the leading-logarithmic corrections. In Fig. 1
we plot the maximal and minimal values of tan � at the �xed-point solution,
which are obtained for a heavy gluino mass, of the order of the heavier stop
one, and for sin 2�~t = �1, and also for heavy and light gluinos when the stop
mass splitting vanishes.

The comparison of the lower bounds on tan� obtained from the lower
limits on Mh and from perturbativity of the top Yukawa coupling is striking.
In order to interpret the results correctly one should take into account that,
for the same stop mass splitting, the bounds on tan � coming from the limits
on the Higgs boson mass move rapidly up when the mixing parameter j ~Atj
is lowered, while the bound set by the perturbativity of the top Yukawa
coupling moves down (up) for positive (negative) values of ~At (by de�nition
m~g > 0). Already with the present lower limit on the Higgs boson mass, and
for M~t2

<
� 1 TeV, the bounds on tan � coming from the experimental limit

on Mh dominate over those coming from the perturbativity requirement, for
values of the stop mass splitting smaller than 200 GeV (300 GeV) for positive
(negative) values of the mixing angle. Only for larger values of the mass
splitting in the stop sector viablefrared �xed-point solution of the top-quark
mass be accessible. As shown in Fig. 2, these conclusions depend on the value
of the top quark mass. If the top-quark mass were closer to 180 GeV, the
bounds imposed by the Higgs mass limits would become weaker, enlarging
the parameter space consistent with the infrared �xed-point solution. If,
instead, the top-quark mass were closer to 170 GeV, the infrared �xed point
solution would be even more constrained.

To discuss how natural are the large values of the mixing parameters
needed to reach the infrared �xed point solution, consider the case where
supersymmetry breaking is transmitted to the observable sector at scales
of order MGUT . In this case, the infrared �xed-point solution of the top-
quark mass implies also an infrared �xed point in the parameters At and
m2 � m2

Q +m2

U +m2

H2
[5, 22, 6]

At � �1:5M1=2 m2 � 6M2

1=2; (17)

at scales of the order of the weak scale, where we have assumed a common
value M1=2 for the gaugino masses at MGUT (useful formulae for the most
general case can be found in [23, 24]). For the Higgs potential mass parameter
m2

H2
, one gets from the renormalization group evolution m2

H2
' �3M2

1=2 +
::::, while the left- and right-handed stop mass parameters increase with
M1=2, m

2

Q ' 5:5M2

1=2 + :::, m2

U ' 3:5M2

1=2 + ::::, where the ellipses denote
a dependence on the values of the stop and Higgs mass parameters at the
scale MGUT . Hence, increasing the stop masses and/or the gaugino masses,
tends to produce large negative values of m2

H2
� �0:5O(M2

~ti
) 4. Combining

4This can only be avoided by having very large values of the scalar mass parameters
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these solutions with the condition of electroweak symmetry breaking, one
�nds that large values of ~At can be naturally obtained at the �xed point.
In such cases, however, these large values of ~At are negative, implying that
the values of tan � associated with the infrared �xed point solutions move to
lower values compared to the case of no mixing.

Figure 3 shows the bounds on tan� that will be obtained in the case that
no Higgs boson signal is found at LEP for

p
s = 192 GeV, implying a bound

Mh
>
� 98 GeV [25] 5. In that case, even for large values of the stop mass

splitting and the mixing parameter, the bound on tan � resulting from the
Higgs mass constraints will be stronger than the perturbativity bounds for
values of the heavier stop mass smaller than 700 GeV (1 TeV), for positive
(negative) values of the stop mixing angle. Hence, as was already emphasized
in di�erent works, a run of LEP at

p
s = 192 GeV will test most of the

parameter space consistent with the infrared �xed-point solution [3, 22, 6]
for a top-quark mass mpole

t
<
� 175 GeV.

Finally, Fig. 3 also shows the bounds that will apply after the �nal run of
LEP, at

p
s = 200 GeV, assuming a potential lower limit on the Higgs boson

mass of order 108 GeV [25]. It is clear that only moderate or large values of
tan � will be allowed if the Higgs boson is not found at the �nal run of LEP.
This will provide a strong motivation for SO(10)-type uni�cation models, in
which large values of tan � and Higgs masses of order 110 � 120 GeV are
naturally predicted [26]. Of course, from Figs. 1 and 3, one can also infer the
values of the stop mass parameters consistent with the infrared �xed-point
solution of the top-quark mass, in the case that the Higgs boson is found at
the future runs of the LEP collider.

Up to now we have been discussing the situation with a large CP -odd
Higgs boson mass, MA � MZ. Since for the other MSSM parameters �xed,
Mh is maximal for MA

>
� 250 GeV, this is the con�guration that is expected

to yield the smallest lower bound on tan �. Indeed, for smaller values of MA

(for a �xed stop spectrum and �xed value of tan �) both the coupling to the
Z0 boson and the mass of the lighter CP -even Higgs particle decrease. For
tan � <

� 3 and 150 GeV<
� MA

<
� 250 GeV, the decrease of Mh compensates

the drop in the h0Z0Z0 coupling, so that the Higgs boson strahlung cross
section actually increases, implying a bound on tan � stronger than that ob-
tained for MA

>
� 250 GeV [25]. For values of MA

<
� 130 GeV and values of

tan � >
� 4, however, this ceases to be true. In this regime, the h0A0 associ-

ated production cross section rapidly increases, and this becomes the most
e�cient channel for supersymmetric Higgs boson detection. Hence, a small
window for MA ' O(100 GeV) may still exist, for which the lower bound
on tan� for a given stop spectrum may be lower than the ones presented in

at the GUT scale, with very speci�c correlations between them [22, 23].
5As emphasized above, in the numerical computations we have lowered the bound by

2 GeV with respect to the considered Higgs mass limit
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this work (see also [29]) 6. Since this window tends to occur for relatively
large values of tan�, for which precise determination of the bounds would
require exploration of the full Higgs boson discovery potential at LEP (and
combination of the results of the four LEP collaborations at the next runs of
LEP), we shall not explore this possibility within this work.

It is also instructive to study the impact of precision electroweak mea-
surements on the stop mass limits derived above. In Fig. 4, we compare for
tan � = 1:5 and mt = 175 GeV (close to the infrared �xed point), and three
di�erent values of the lighter stop massM~t1, the regions in the (M~t2; �~t) plane
allowed by the present limit on the Higgs boson mass7 (solid lines) and by
precision measurements (shadowed area). To be conservative the precision
data constraints are taken into account by requiring �stops� <

� 6� 10�4) [1].
The precision measurement bounds are clear: for �~t = 0 (corresponding to
purely right-handed lighter stop), the mass of the heavier (left-handed) stop
is bounded from below (coming from the imposed bound on ��), but no
upper bound can be set. For values of �~t ' �=2, the constraint on �� can
be satis�ed only by tuning the value of ~At to be large and of the order of
the right-handed stop mass [27, 28]. For sin 2�~t ' 1, precision measurements
put an upper bound on the heavier stop mass, which, for su�ciently large
splitting of the stop masses, can be lower than the lower bound obtained
from the limits on the Higgs boson mass. Hence, for a given value of the
heavier stop mass a non-trivial bound on the lighter stop mass can be ob-
tained. In particular, we see from Fig. 4 that for values of tan � close to the
�xed point and values of the mixing that maximize the Higgs-boson mass,
precision measurements disfavours values of the lighter stop mass below 150
GeV. Notice, however, that acceptable values of the parameter �� can be
obtained by increasing the heavier (or the lighter) stop mass. In particular,
close to the �xed point, and for values of the lighter stop mass above 150
GeV, the bounds on the stop parameters imposed by the limits on the Higgs
boson mass become stronger than the ones coming from precision data (the
opposite is true for large values of tan� [28]).

A striking result that appears from Fig. 4 is the existence of an e�ective
upper bound on the heavier stop mass (for �xed �~t) from the present limit
on the Higgs boson mass. It is interesting to understand the situation for
values of sin 2�~t ' 1, for which the largest values of the Higgs boson mass
are obtained. In this case, the mixing parameter is approximately given by

~At '
M2

~t2
�M2

~t1

2mt
: (18)

6This depends, however, on the other details of the MSSM spectrum, since, in this case,
constraints from b! 
s and Z0 ! �bb come into play.

7As explained before, we takeMh > 88 GeV as a conservative estimate in our numerical
computation.
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This means that the ratio ~At=MSUSY � ~At=M~t2 grows as M~t2=mt for growing
M~t2, leading, by Eqs. (8), (9), to negative contributions toMh, which rapidly
overcome the positive logarithmic dependence on M~t2 . For very large stop
mass splitting, of course, Eq. (8) is not applicable, and the exact value should
be obtained by using the whole renormalization group improved e�ective
potential [11].

As emphasized above, the perturbativity bounds depend also on the
physics at scales larger than the supersymmetric particle masses and, hence,
are model-dependent. Adding new matter multipletswith non-trivial SU(3)�
SU(2) � U(1) quantum numbers at some intermediate scale MI , e.g. extra
5 + �5 and/or 10 + 10 matter representations (having no interactions with
the ordinary matter in the superpotential), decreases the lower perturbativ-
ity limit on tan �. This is easy to understand, by noting that above the scale
MI , �s becomes less asymptotically free (i.e. goes up steeper) and, therefore,
has a stronger damping e�ect on the top quark Yukawa coupling, thus allow-
ing for a larger initial value at Q = mt (and, hence, lower tan �). Of course,
adding more extra representations at lower scaleMI allows for smaller tan �.
One could hope, therefore, that with a suitable number of extra representa-
tions at some scale MI one can reach a lower limit on tan � smaller than 1
and at the same time satisfy also the Higgs mass limit (see Fig. 1). However,
for a given scale MI the number of extra representations is limited by per-
turbativity of the gauge couplings. With all one-loop threshold corrections
to the relation (1) we �nd that for MI

>
� 105 GeV one can a�ord at most

�ve 5+�5 representations (or two 5+�5 and one 10+10 representations) for
relatively heavy (>� 1:5 TeV) sparticle spectra. For sparticle spectra <

� 1 TeV
only four 5+�5 representations (or one 5+�5 and one 10+10 representations)
are allowed. As a result, the perturbativity limit on tan � can approach 1
only for very heavy sparticle spectra (>� 2 TeV) and/or large mixing stop
mass parameters. This is illustrated in Fig. 5.

In very interesting works [30, 31], it has been shown that, in the minimal
supergravity model, the infrared �xed-point solution is already ruled out by
the requirement of having a phenomenologically acceptable amount of dark
matter and/or avoiding charge- or colour-breaking minima. It is important to
notice, however, that in general supergravity models, the masses of sfermions
with di�erent quantum numbers may be di�erent. In particular, there might
be no correlation between the slepton, Higgs, neutralino and squark masses.
Without these correlations, it is di�cult to relate the neutralino annihilation
cross section to the Higgs and stop spectrum and hence, the �xed-point
solution cannot be ruled out by these considerations. Moreover, even if the
correlations between sparticle masses were similar to the ones present in the
minimal supergravity model, a tiny violation of R-parity would be su�cient
to suppress these cosmological constraints on the infrared �xed-point solution
and to avoid dangerous colour- or charge-breaking minima [31].
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In another independent work, it has been noted [32] that the amount of
�ne tuning [33] increases for low values of tan � close to the �xed-point. This
is specially the case for the large values of the stop masses that are necessary
to approach the �xed-point solution. If a Higgs particle is found in the next
runs of the LEP collider, it would be interesting to investigate the conditions
necessary to obtain a spectrum consistent with the �xed-point solution in a
natural way. If it is not found, the �xed-point solution will be ruled out by
solid experimental data.

Another cosmologically interesting scenario, which demands Higgs masses
in the range of LEP2, is electroweak baryogenesis [34]. The realization of this
scenario, however, demands a light stop and relatively small values of the stop
mixing. As follows from the present analysis of the constraints on the stop
sector imposed by the Higgs boson mass limits (and precision data), the
above requirements can only be satis�ed either for moderate values of tan �,
or for very large values of the heavier stop mass. In fact, for values of the
heavier stop mass at most of the order of 2 TeV, a lower bound on tan � >

� 2
can already be obtained in this particular case. Hence, this scenario is not
consistent with the infrared �xed-point solution.

Let us �nish this discussion by mentioning that in this work we have as-
sumed the absence of any extra Higgs-like states in the low-energy spectrum.
For instance, the presence of a singlet [35], with a tree-level superpotential
coupling �SH1H2 would induce a tree-level quartic coupling for the lighter
CP-even Higgs boson proportional to �2 sin2 2� [36]. This tree-level contri-
bution would become most important for low values of tan� and could only
be constrained by perturbativity limits on the coupling �. If such a singlet
were present in the low-energy spectrum, the bounds on tan � and on the
stop mass parameters would be considerably modi�ed.
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Figure 1: Bounds on tan � obtained for mpole
t = 175 GeV and for a lower

bound on the Higgs boson mass Mh > 88 GeV, as a function of the heavier
stop mass, for di�erent values of the stop mass splitting �M~t = 0{500 GeV
(solid lines). Also plotted here are the top Yukawa coupling perturbativity
bounds for the case of heavy gluino (m~g = M~t2) for �M~t = 400 GeV and
sin 2�~t = �1 (upper-lower dashed lines), and for heavy gluino (center-dashed
lines) and light gluino (m~g = 200 GeV) (dotted line) for �M~t = 0.
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Figure 2: The same as Fig. 1, but for mpole
t = 170 GeV and mpole

t = 180
GeV.
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Figure 3: The same as Fig. 1, but for lower bounds on the Higgs boson mass
of 96 GeV and 106 GeV.
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Figure 4: Bounds coming from the constraints on the parameter (��)stops

(shadowed region) in the heavier stop mass{stop mixing angle plane, for
values of tan � = 1:5, and for di�erent values of the lighter stop mass M~t1 =
100, 200 and 300 GeV. Also shown here are the bounds obtained from the
present limit on the Higgs boson mass (regions between solid lines).
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Figure 5: The same as Fig. 1, but with �ve additional 5 + �5 pairs (or
equivalently, two 5+�5 pairs and one 10+10 pair) added at the scale of 250
TeV.
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